South Ural State University Faculty of Computational Mathematics and Informatics

Course Descriptions in Fundamental Computer Science and IT MAJOR: Database Technologies

		ECTS cr
B.1.02	Mathematical Foundation of Information Security	3
B.1.03	Algorithmic Foundation of Multimedia Technologies	2
B.1.05	Java Programming	3
V.1.01	Mobile Programming	4
DV.1.01.01	Markup Languages	3
DV.1.02.01	Advanced Methods of Software Development	2
B.2.01	Information Technology Analysis	2
B.2.02	Object-oriented CASE Technologies	2
B.2.03	Object Databases	2
B.2.04	Distributed Object Technologies	3
B.2.05	Distributed and Parallel Programming	4
V.2.01.01	Corporate Web Application Development on Java Platform	2
V.2.01.02	Parallel DBMS Development	2
V.2.02	Advanced Technologies for DBMS Development	4
DV.2.01.01	Enterprise Management Systems	3
DV.2.02.01	High Load Web Systems	2

B.1.02	MATHEMATICAL FOUNDATIONS OF3 ECTS crINFORMATION SECURITY
Year and	Year 1
Semester	Semester 1
Teacher(s)	Rifkhat Aleev, Doctor of Science, Professor of System Programming Department.
Aims	The student obtains basic skills in mathematical methods of information security. Upon completion of the course, the student will be able to implement basic algorithms of information protection.
Content	Factorization of large numbers. Discrete logarithm. Groups. Rings, fields. Basics of information theory. Linear codes. Error detection and correction. Symmetric and asymmetric ciphers. Diffie-Hellman requirements. RSA cryptosystem. Digital signature. Computer system, access, security policy. Identification and authentication. Password-based protection systems. Clark-Wilson model.
Modes of Study	Lectures 18 h. Practical assignments 36 h. Self-study 54 h. Total 108 h.
Evaluation	2-5
Study Materials	Materials are delivered/announced during classes.
Prerequisites	Bachelor courses are required:
•	B.2.04 Algebra and Geometry
	B.2.04 Finite graph theory and its applications
	B.03.02 Discrete mathematics

g,
(

B.1.05	JAVA PROGRAMMING	3 ECTS cr
Year and	Year 1	
Semester	Semester 1	
Teacher(s)	Artem Nabirkin, Lecturer of System Programming De	epartment
Aims	The student obtains basic skills in Java programming completion of the course, the student will able to deve Java applications using modern design techniques (C	j language. Upon elop high-quality DOP, design
Content	Introduction to the Java language. Java programming	g environment. Data
	types and type conversion. Objects, classes, package	es. Object oriented
	programming in Java basics. Operators and the struc	cture of the code.
	Exception handling and debugging. Collections. Exec	cution of threads,
	synchronization, work with files. java.lang, java.awt p	ackages. Swing
	library, user interface development. The garbage coll	ector. Basic design
Modes of Study	Practical assignments 54 h	
	Self-study 54 h	
	Total 108 h.	
Evaluation	2-5. Exam 50 %, practical assignments 50 %.	
Study Materials	Materials are delivered/announced during classes.	
-		
V.1.01	MOBILE PROGRAMMING	4 ECTS ci
Year and	Year 2	
-		

Year and	Year 2
Semester	Semester 3
Teacher(s)	Aleksandr Gorskih, Master of Science, Assistant Lecturer of System
	Programming Department
Aims	The student obtains basic skills in mobile programming. Upon completion
	of the course, the student will be able to design and implement
	applications for mobile devices.
Content	Introduction: xCode, Objective-C, Cocoa API. Mobile GUI development:
	StoryBoard, segue, gesture recognition, AnimationKit, IBAction, IBOutlet.
	Data processing in iOS: iCloud, CoreData, MapKit, accounts framework,
	accelerate framework, CoreBluetooth, CoreLocation. Game development:
	OpenGL ES 2.0, AV Foundation, Game Center, GameKit. iOS application
	development framework: iOS MVC, OCMock, OCUnit, CI (Continuous
	Integration).
Modes of Study	Practical assignments 54 h.
	Self-study 54 h.
	Total 108 h.
Evaluation	2-5. Practical assignments 50 %, exam 50 %.
Study Materials	Materials are delivered/announced during classes.

DV.1.01.01	MARKUP LANGUAGES 3 ECTS cr
Year and	Year 1
Semester	Semester 1
Teacher(s)	Elena Ivanova, Master of Science, Senior Lecturer of System Programming Department
Aims	The student obtains basic skills in markup languages. Upon completion of the course, the student will be able to apply World Wide Web Consortium (W3C) technologies in document processing.

Content	Introduction to markup languages: motivation, classification and basic elements – tags, elements and attributes. Hypertext Markup Language (HTML). Cascading Style Sheets (CSS). XML technologies. Document Type Definition (DTD). Navigating in XML-documents using XPath language. Transformation and visualization of XML-documents using XSL (eXtensible Stylesheet Language). XML Schema. Linking of XML- elements using XLink and XPointer languages. Scalable Vector Graphics (SVG) language.
Modes of Study	Practical assignments 54 h. Self-study 54 h
	Total 108 h
Evaluation	2-5. Practical assignments 50 %, exam 50 %.
Study Materials	Materials are delivered/announced during classes.
Prerequisites	Influences Web-based programming course (bachelor).

DV.1.02.01	ADVANCED METHODS OF SOFTWARE 2 ECTS cl
	DEVELOPMENT
Year and	Year 1
Semester	Semester 2
Teacher(s)	Olga Ivanova, Candidate of Science, Associate Professor of System Programming Department
Aims	The student obtains basic skills in object-oriented methods for information systems development. Upon completion of the course, the student will be able to design and implement applications using design patterns, test-driven development, refactoring and SOLID methodology.
Content	General principles of object-oriented design. The concept of clean code. The SOLID methodology. Test-driven development (TDD) and refactoring. Basic design patterns: Abstract Factory, Singleton, Adapter, Bridge, etc. MVC (Model-View-Controller) patterns. Basic templates for design of enterprise applications: Allocator, Plug-in, Selected interface, etc. ORM technology and examples of its implementation.
Modes of Study	Practical assignments 36 h. Course project (self-study) 36 h. Total 72 h
Evaluation	Passed Failed. Credit test 20%, practical assignments 40%, course project 40%.
Study Materials	Materials are delivered/announced during classes.
Prerequisites	Object-oriented CASE technologies

B.2.01	INFORMATION TECHNOLOGY ANALYSIS 2 ECTS ci
Year and	Year 2
Semester	Semester 3
Teacher(s)	Fedianina Raisa, Senior lecturer of System Programming Department
Aims	The student obtains basic skills in IT standards and global information
	infrastructure technologies. Upon completion of the course, the student
	will be able to develop profiles of information systems and perform
	conformance testing of such profiles.
Content	The concept of open systems; system of IT standards and its
	organizational structure. Profiles of open systems environment (OSE
	profiles). Methodology and system of POSIX OSE standards. OSI System

Modes of Study	of standards. Specification of network protocols and their services. Methodology and technology of OSI conformance testing. Concept of global information infrastructure. Practical assignments 36 h. Self-study 36 h. Total 72 h.
Evaluation	2-5. Practical assignments 50 %, exam 50 %.
Study Materials	Materials are delivered/announced during classes.
Prerequisites	Object-oriented CASE-technologies

B.2.02	OBJECT-ORIENTED CASE TECHNOLOGIES 2 ECTS cr
Year and	Year 1
Semester	Semester 1
Teacher(s)	Olga Ivanova, Candidate of Science, Associate Professor of System
	Programming Department
Aims	The student obtains basic skills in information systems design using UML.
	Upon completion of the course, the student will be able to apply the UML-
	based modeling tools and engineering methods for the software design
	and implementation.
Content	Analysis and Extraction of Classes. The Class Diagram. Diagrams of the
	Internal Structure, Components and Accommodation. Use Case Diagram.
	The Interaction Diagram. The State Diagram. The Activity Diagram.
Modes of Study	Practical assignments 36 h
	Course project 33 h
	Credit test 3 h
	Total 72 h
Evaluation	Passed Failed. Credit test 30%, practical assignments 70%.
Study Materials	Materials are delivered/announced during classes.

B.2.03	OBJECT DATABASES	2 ECTS cr
Year and	Year 2	
Semester	Semester 3	
Teacher(s)	Mikhail Zymbler, Candidate of Science, Associate Professo Programming Department	r of System
Aims	The student obtains basic skills in database systems based model. Upon completion of the course, the student will be a and implement applications for object-oriented, object-relati graph, document-oriented and geospatial databases.	l on object Ible to design ional, XML,
Content	Motivation of Object databases: impedance mismatch probin database technologies, Object Database Management G and its activities. Object-relational databases: column object objects, nested tables, subtypes and supertypes (Oracle DI example). Object-oriented databases: ODMG architecture, Definition Language), OQL (Object Query Language), OML Manipulation Language). XML databases and XQuery lang XML DBMS as an example). Ocument-oriented databases (Neo4j DBMS as Geospatial databases (PostGIS DBMS as an example).	lem, manifests froup (ODMG) ets, row BMS as an ODL (Object . (Object uage (Sedna s (MongoDB an example).
Modes of Study	Practical assignments 36 h. Self-study 36 h. Total 72 h.	

Evaluation	Passed Failed. Credit test 30%, practical assignments 70%.		
Study Materials	Materials are delivered/announced during classes.		
B.2.04	DISTRIBUTED OBJECT TECHNOLOGIES 3 ECTS cr		
Year and	Year 1		
Semester	Semester 2		
Teacher(s)	Gleb Radchenko, Candidate of Science, Associate Professor of the		
	System Programming Department.		
	Dmitry Nenazhenko, Master of Science, Assistant Lecturer of the Syste		
	Programming Department.		
Aims	The student obtains basic skills in distributed computing systems and		
	service-oriented architectures. Upon completion of the course, the student		
	will be able to design and implement distributed applications based on		
Contont	Rivil, web-services and cloud computing approach.		
Content	The CAP theorem RMI and distributed object technologies middleware		
	stacks: RPC, Java RMI, NFT Remoting, CORBA, Service Oriented		
	Architecture: definition, basic concepts, good practices. Basic standards		
	of XML Web Services (WSDL, SOAP, WS-Security, WS-Addressing).		
	The concept of REST Services. Principles and technology of peer-to-peer		
	systems. The concept of Grid. Grid platforms: UNICORE. Cloud		
	computing technologies and platforms: Windows Azure, Amazon EC2,		
	Google Cloud Platform. Mass computing systems: BOINC platform.		
Modes of Study	Practical assignments 36 h.		
	Lectures 18 n.		
	Total 108 h		
Evaluation	Passed Failed		
	Credit test 30%, practical assignments 70%.		
Study Materials	1) Robert Daigneau, Service Design Patterns: Fundamental Design		
	Solutions for SOAP/WSDL and RESTful Web Services. 2011. 352 p.		
	2) Kai Hwang, Jack Dongarra, Geoffrey C. Fox. Distributed and Cloud		
	Computing: From Parallel Processing to the Internet of Things. Morgan		
	Kaufmann, 2011. 672 p.		
	3) John Rhoton, Risto Haukioja. Cloud Computing Architected: Solution		
	Design Handbook. Recursive Press, 2011. 385 p.		
	An Agile Approach Using SaaS and Cloud Computing Strawberry		
	Canvon LLC 2012 412 n		
	5)Tomas Erl, Service-Oriented Architecture: Concepts, Technology, and		
	Design. Prentice Hall, 2005. 792 p.		
	Additional materials are delivered/announced during classes.		
Prerequisites	Students should be able to develop cross-platform software on high-level		
	language (Java).		
	Students should know the principles of object-oriented software design.		
B.2.05	DISTRIBUTED AND PARALLEL 4 ECTS cr		
	PROGRAMMING		
Year and	Year 1, 2		
Semester	Semester 2, 3		

Teacher(s)	Tatyana Lymar, Candidate of Science, Associate Professor of System Programming Department		
Aims	The student obtains basic skills in parallel programming. Upon completion of the course, the student will be able to design and implement parallel algorithms and applications for multi-core, multiprocessor and distributed computing systems.	۱	
Content	Goals and objectives of parallel processing. Types of parallel processing. Architectures of parallel computing systems. Methods for evaluating the performance of multiprocessor systems. Principles for the development of parallel algorithms. Technological development cycle: partitioning, communication, agglomeration and mapping. Complexity analysis of parallel algorithms. Speedup and efficiency of parallel algorithms. Parallel programming for multiprocessor systems with distributed memory, MPI standard. Parallel programming for multiprocessor systems with shared memory. OpenMP standard	es of parallel processing. hods for evaluating the es for the development of cycle: partitioning, mplexity analysis of trallel algorithms. Parallel stributed memory, MPI or systems with shared	
Modes of Study	Lectures 18 h Practical assignments 54 h. Self-study 72 h Total 144 h		
Evaluation	2-5. Exam test 50%, practical assignments 50%.		
Study Materials	Materials are delivered/announced during classes.		
V.2.01.01	CORPORATE WEB APPLICATION 2 ECTS c	r	

V.2.01.01	CORPORATE WEB APPLICATION 2 ECTS cr
	DEVELOPMENT ON JAVA PLATFORM
Year and	Year 1
Semester	Semester 2
Teacher(s)	Artem Nabirkin, Lecturer of System Programming Department
Aims	The student obtains basic skills in technologies of corporate Java web applications development. Upon completion of the course, the student will able to use methods and tools for effective corporate applications development.
Content	Java web application architecture. Application server (Tomcat, Jetty). Java servlets and their life cycle. Java services (SOAP, RESTful). Database programming with Java (JDBC/JPA (Hibernate)). Java Server Pages technology. Build manager for Java projects (Ant, Maven).
Modes of Study	Practical assignments 36 h.
	Self-study 36 h.
	Total 72 h.
Evaluation	Passed Failed. Credit test 30%, practical assignments 70%.
Study Materials	Materials are delivered/announced during classes.

V.2.01.02	PARALLEL DBMS DEVELOPMENT	2 ECTS cr
Year and	Year 2	
Semester	Semester 3	
Teacher(s)	Constantin Pan, Candidate of Science, Lecturer of System F Department	Programming
Aims	The student obtains practical skills in development of prototy database management system (DBMS). Upon completion of the student will design and implement a prototype of parallel upon partitioned parallelism.	pe of parallel the course, DBMS based

Content	Implementation of Query Parallelizer. Implementation of EXCHANGE operator. Implementation of Query Executor. Implementation of JOIN	
Modes of Study	Practical assignments 36 h. Self-study 36 h.	
Evaluation Study Materials Prerequisites	Passed Failed. Practical assignments 100%. Materials are delivered/announced during classes. Advanced Technologies for DBMS Development	
V.2.02	ADVANCED TECHNOLOGIES FOR DBMS 4 ECTS cr DEVELOPMENT	
Year and	Year 1	
Semester	Semester 1, 2	
Teacher(S)	Department	
Aims	The student obtains basic skills in technologies of database management system (DBMS) development. The course consists of two parts: "Query	
	processing in database systems" and "Parallel database systems" (one	
	semester for each). Upon completion of the course, the student will be able to design and implement a prototype of parallel DBMS based upon	
	partitioned parallelism.	
Content	1. Query processing in database systems	
	The major parts of the query processor. Building a logical query plan	
	using parse tree. Logical optimization of the query. Estimating the cost of	
	the data Implementation of the query processor. Algorithms to implement	
	the join operation.	
	2. Parallel database systems	
	Schema of the parallel query processing. Forms of the parallel	
	transactions processing. Definition of the parallel database system.	
	Classification of the multiprocessor systems. Data partitioning.	
	Load balancing in multiprocessor hierarchies	
Modes of Study	Lectures 72 h.	
•	Self-study 72 h.	
	Total 144 h.	
Evaluation	2-5. Exam 100%	
Study Materials	Materials are delivered/announced during classes.	
<u><u>U</u>V.2.UI.UI Year and</u>	LINIERFRISE WAINAGEWEINI SISIEWS SECTS CF Vear 2	
Semester	Semester 3	
Teacher(s)	Valentina Aleeva, Candidate of Science, Associate Professor of System	
	Programming Department	
	Alexander Gorskih, Master of Science, Assistant of System Programming	

Aims Department The student obtains basic skills in ERP (Enterprise Resource Planning) systems. Upon completion of the course, the student will be able to design ERP systems using SAP ERP ECC (former SAP R/3) platform and ABAP/4 programming language.

Content	Introduction to enterprise management systems (definition, typical functionality, classification, examples). SAP ERP ECC (former SAP R/3) platform: development and maintenance life cycle. ABAP/4 programming language and integrated development environment.
Modes of Study	Lectures 18 h. Practical assignments 36 h. Self-study 54 h. Total 108 h.
Evaluation Study Materials	Passed Failed. Credit test 50%, practical assignments 50%. Materials are delivered/announced during classes.
Prerequisites	V.2.01.01 Corporate web application development on Java platform, DV.1.02.01 Advanced methods of software development, B.2.02 Object-oriented CASE-technologies.

DV.2.02.01	HIGH LOAD WEB SYSTEMS	2 ECTS cr
Year and	Year 1	
Semester	Semester 2	
Teacher(s)	Eduard Ivanov, Head of IT Department of 74.RU Company	
Aims	The student obtains basic knowledge in hardware and soft for building of high load web systems. Upon completion of the student will be able to design, implement, configure, tur backup high load information systems.	ware systems the course, ne and
Content	Survey of modern high load systems (Google, Facebook, L etc.). Web-servers and DBMSs for high load systems. Data for high load systems: replication, sharding, clustering. Tes and refactoring of high load systems. Monitoring and load k system's nodes. The CAP theorem (a.k.a. Brewer's theorem high load systems. Content Delivery Network.	iveJournal, abase design ting, tuning balancing of m). Backup of
Modes of Study	Lectures 18 h. Practical assignments 18 h. Self-study 36 h. Total 72 h.	
Evaluation	Passed Failed. Credit test 30%, practical assignments 70%	,).
Study Materials	Materials are delivered/announced during classes.	